ArcGIS REST Services Directory Login | Get Token
JSON

Layer: Probability of Hexactinellid Sponge Presence (ID: 92)

Parent Layer: Gulf of Alaska

Name: Probability of Hexactinellid Sponge Presence

Display Field:

Type: Raster Layer

Geometry Type: null

Description: Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. This work compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance (~50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and nonnormal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods. This grid displays mean predicted probability of presence of Hexactinellid sponges in the Gulf of Alaska.

Copyright Text: National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) Alaska Fisheries Science Center

Default Visibility: false

MaxRecordCount: 0

Supported Query Formats: JSON, geoJSON, PBF

Min Scale: 0

Max Scale: 0

Supports Advanced Queries: false

Supports Statistics: false

Has Labels: false

Can Modify Layer: false

Can Scale Symbols: false

Use Standardized Queries: true

Supports Datum Transformation: true

Extent:
Drawing Info: Advanced Query Capabilities:
HasZ: false

HasM: false

Has Attachments: false

HTML Popup Type: esriServerHTMLPopupTypeNone

Type ID Field: null

Fields: None


Supported Operations:   Query   Query Attachments   Query Analytic   Generate Renderer   Return Updates

  Iteminfo   Thumbnail   Metadata